
Symbolic Learning of Component Interfaces

Dimitra Giannakopoulou1, Zvonimir Rakamarić2, and Vishwanath Raman2

1 NASA Ames Research Center, USA
dimitra.giannakopoulou@nasa.gov

2 Carnegie Mellon University, USA
{zvonimir.rakamaric,vishwa.raman}@gmail.com

Abstract. Given a white-box component C with specified unsafe states, we ad-
dress the problem of automatically generating an interface that captures safe or-
derings of invocations of C ’s public methods. Method calls in the generated in-
terface are guarded by constraints on their parameters. Unlike previous work,
these constraints are generated automatically through an iterative refinement pro-
cess. Our technique, named PSYCO (Predicate-based SYmbolic COmpositional
reasoning), employs a novel combination of the L* automata learning algorithm
with symbolic execution. The generated interfaces are three-valued, capturing
whether a sequence of method invocations is safe, unsafe, or its effect on the
component state is unresolved by the symbolic execution engine. We have imple-
mented PSYCO as a new prototype tool in the JPF open-source software model
checking platform, and we have successfully applied it to several examples.

1 Introduction

Component interfaces summarize aspects of components that are relevant to their
clients, thus being at the heart of modular software development and reasoning tech-
niques. Traditionally, component interfaces have been of a purely syntactic form. How-
ever, with the advent of component-based distributed development and service-oriented
computing, components are no longer just parts of specific closed systems. Rather, mod-
ern components are open building blocks that can be reused or connected dynamically,
in a variety of environments, in order to form larger systems. As a result, component
interfaces must step up to the role of representing component aspects that are relevant
to tasks such as dynamic component retrieval and substitution, or functional and non-
functional reasoning about systems.

This paper focuses on “temporal” interfaces, which capture ordering relationships
between invocations of component methods. For example, an interface may prescribe
that closing a file before opening it is undesirable because an exception will be thrown.
An ideal interface should precisely represent the component in all its intended usages.
In other words, it should include all the good interactions, and exclude all problematic
interactions. Previous work presented approaches for computing temporal interfaces
using techniques such as predicate abstraction [14] and learning [2, 10, 22].

This work studies a more general problem: automatic generation of precise inter-
faces for components that include methods with parameters. Whether a method call is
problematic or not depends on the actual values passed for its formal parameters. There-
fore, we target the generation of interfaces which, in addition to method orderings, also

include method guards (i.e., constraints on the parameters of the methods), as illustrated
in Fig. 2. We are not aware of any existing approaches that provide a systematic and
automated way of introducing guards in temporal interfaces.

Our proposed solution is based on a novel combination of learning with symbolic
execution techniques. In particular, we use the L* automata-learning algorithm to au-
tomatically generate a component interface expressed as a finite-state automaton over
the public methods of the component. L* generates approximations of the component
interface by interacting with a teacher; the teacher uses symbolic execution to answer
queries from L* about the target component, and produces counterexamples when in-
terface approximations are not precise. The generated interfaces are three-valued, cap-
turing whether a sequence of method invocations is safe, unsafe, or its effect on the
component state is unresolved by the underlying symbolic execution engine.

Initially, the interface is computed over method names, making no differentiation
between input values of parameters, i.e., input values of parameters are unconstrained.
The symbolic-execution-based teacher, however, may detect a need for partitioning the
space of input parameter values based on constraints computed by the underlying sym-
bolic engine. The alphabet is then refined accordingly, and learning restarts on the re-
fined alphabet. Several learn-and-refine cycles may occur during interface generation.

We have implemented our approach within the JPF (Java Pathfinder) software ver-
ification toolset [17]. JPF is an open-source project developed at the NASA Ames Re-
search Center. The presented technique is implemented as a new tool called PSYCO in
the JPF project jpf-psyco. PSYCO automatically generates rich interfaces for Java
classes. To achieve that, it relies on two other projects within JPF: jpf-learn, which
provides automata learning algorithms, and jpf-jdart, which implements dynamic
symbolic execution [11] for Java. We have applied PSYCO to learn component inter-
faces of several realistic examples that could not be handled automatically and precisely
using previous approaches.

The main contributions of this paper are as follows:

– A novel combination of learning and symbolic techniques for the generation of
rich component interfaces; the approach refines a component’s interface alphabet
by automatically generating appropriate method guards.

– The use of three-valued automata to precisely record whether a sequence of method
invocations is safe, unsafe, or unresolved; subsequent alternative analyses could be
employed to explore the unresolved paths.

– Implementation of the approach in a new tool within the JPF software verification
toolset and successful application of the tool on several realistic examples.

Related Work. Interface generation for white-box components has been studied exten-
sively in the literature (e.g., [14, 2, 10, 22]). However, as discussed, none of the existing
approaches that we are aware of provide a systematic and automated way of refining
the interface method invocations using constraints on their parameters.

Automatically creating component models for black-box components is a related
area of research. For methods with parameters, abstractions are introduced that map
alphabet symbols into sets of concrete argument values. An argument value set repre-
sents the corresponding partition, and is used for invoking the component. In the work

class PipedOutputStream {
PipedInputStream sink = null;

public void connect(

PipedInputStream snk) {
if (snk == null) {

assert false;

} else if (sink != null ||

snk.connected) {
assert false;

}
sink = snk;

snk.connected = true;

}
}

public void write() {
if (sink == null) {
assert false;

} else { ; }
}

public void flush() {
if (sink != null) { ; }

}

public void close() {
if (sink != null) { ; }

}
}

Fig. 1: Motivating example.

by Aarts et al. [1], abstractions are user-defined. Hower et al. [16] discover such ab-
straction mappings through an automated refinement process. In contrast to that work,
availability of the component source code enables us to generate guards that character-
ize precisely each method partition, making the generated automata more informative.
MACE [7] combines black- and white-box techniques since it uses dynamic symbolic
execution on binaries of a component, but does so only to discover new concrete in-
put messages that generate new system states. The input alphabet is automatically re-
fined based on a user-provided abstraction of output messages. Again, our work directly
leverages symbolic information in order to perform precise alphabet refinement.

Interface generation is also related to assumption generation for compositional ver-
ification, where learning-based approaches have been studied for expressing finite-state
components as simple LTSs [19, 13, 6, 5]. A different type of alphabet refinement has
been developed in that context [9, 4]. These techniques compute smaller alphabets for
more efficient compositional reasoning, and alphabets are refined if compositional rea-
soning is not conclusive with a given alphabet.

2 Motivating Example

Our motivating example is the PipedOutputStream class taken from the java.io

package. Similar to previous work [2, 22], we removed unnecessary details from the
example; Fig. 1 gives the simplified code. The example has one private field sink of
type PipedInputStream, and four public methods called connect, write, flush, and close.
Throwing exceptions is modeled by asserting false, denoting an undesirable error state.

The class initializes field sink to null. Method connect takes a parameter snk of type
PipedInputStream, and goes to an error state (i.e., throws an exception) either if snk

is null or if one of the streams has already been connected; otherwise, it connects the
input and output streams. Method write can be called only if sink is not null, otherwise
an error state is reached. Methods flush and close have no effect when sink is null, i.e.,
they do not throw an exception.

Fig. 2 shows on the right the interface generated with PSYCO for this example.
The interface captures the fact that flush and close can be invoked unconditionally,

0 π

close

flush

connect

write

1

π

0

close[true]flush[true]

write[true]

connect[snk �= null ∧
snk.connected = false]

connect[snk = null ∨
snk.connected �= false]

close[true]

write[true]

flush[true]
connect[true]

Fig. 2: Interfaces for our motivating example. On the left, there is no support for guards,
while on the right, PSYCO is used to generate guards. Initial states are marked with
arrows that have no origin; error states are marked with π . Edges are labelled with
method names (with guards, when applicable).

whereas write can only occur after a successful invocation of connect. The guard
snk �= null ∧ snk.connected = false, over the parameter snk of the method connect,
captures the condition for a successful connection. Without support for guards in our
component interfaces, we would obtain the interface shown on the left. This interface
allows only methods that can be invoked unconditionally, i.e., close and flush. Method
connect is blocked from the interface since it cannot be called unconditionally. Since
connect cannot be invoked, write is blocked as well. Clearly, the interface on the left, ob-
tained using existing interface generation techniques, precludes several legal sequences
of method invocations. In existing approaches, a user is expected to manually define a
refinement of the component methods to capture these additional legal behaviors. Our
approach performs such a refinement automatically. Therefore, support for automati-
cally generating guards enables PSYCO to generate richer and more precise component
interfaces for components that have methods with parameters.

3 Preliminaries

Labeled Transition Systems (LTS). We use deterministic LTSs to express temporal
component interfaces. Symbols π and υ denote a special error and unknown state,
respectively. The former models unsafe states and the latter captures the lack of knowl-
edge about whether a state is safe or unsafe. States π and υ have no outgoing transitions.

A deterministic LTS M is a four-tuple �Q,αM,δ ,q0� where: 1) Q is a finite non-
empty set of states, 2) αM is a set of observable actions called the alphabet of M, 3)
δ : (Q×αM) �→ Q is a transition function, and 4) q0 ∈ Q is the initial state. LTS M is
complete if each state except π and υ has outgoing transitions for every action in αM.

A trace, also called execution or word, of an LTS M is a finite sequence of observ-
able actions that label the transitions that M can perform starting from its initial state.
A trace is illegal if it leads M to state π , unknown if it leads M to state υ , and legal
otherwise. The illegal (resp. unknown, legal) language of M, denoted as Lillegal (M)
(resp. Lunknown (M), Llegal (M)), is the set of illegal (resp. unknown, legal) traces of M.

Three-Valued Automata Learning with L*. We use an adaptation [6] of the classic
L* learning algorithm [3, 20], which learns a three-valued deterministic finite-state au-
tomaton (3DFA) over some alphabet Σ . In our setting, learning is based on partitioning

Component ::= class Ident { Global
∗

Method
+ }

Method ::= Ident (Parameters) { Stmt }
Global ::= Type Ident;

Arguments ::= Arguments, Expr | ε
Parameters ::= Pararameters, Parameter | ε
Parameter ::= Type Ident

Stmt ::= Stmt; Stmt

| Ident = Expr

| assert Expr

| if Expr then Stmt else Stmt

| while Expr do Stmt

| return Expr

Fig. 3: Component grammar. Ident, Expr, and Type have the usual meaning.

the words over Σ into three unknown regular languages L1, L2, and L3, with L* us-
ing this partition to infer an LTS with three values that is consistent with the partition.
To infer an LTS, L* interacts with a teacher that answers two types of questions. The
first type is a membership query that takes as input a string σ ∈ Σ ∗ and answers true

if σ ∈ L1, false if σ ∈ L2, and unknown otherwise. The second type is an equivalence

query or conjecture, i.e., given a candidate LTS M whether or not the following holds:
Llegal (M) = L1, Lillegal (M) = L2, and Lunknown (M) = L3. If the above conditions hold
of the candidate M, then the teacher answers true, at which point L* has achieved its
goal and returns M. Otherwise, the teacher returns a counterexample, which is a string
σ that invalidates one of the above conditions. The counterexample is used by L* to
drive a new round of membership queries in order to produce a new, refined, candidate.
Each candidate M that L* constructs is smallest, meaning that any other LTS consis-
tent with the information provided to L* up to that stage has at least as many states as
M. Given a correct teacher, L* is guaranteed to terminate with a minimal (in terms of
numbers of states) LTS for L1, L2, and L3.

Symbolic Execution. Symbolic execution is a static program analysis technique for
systematically exploring a large number of program execution paths [18]. It uses sym-
bolic values as program inputs in place of concrete (actual) values. The resulting out-
put values are then statically computed as symbolic expressions (i.e., constraints), over
symbolic input values and constants, using a specified set of operators. A symbolic
execution tree, or constraints tree, characterizes all program execution paths explored
during symbolic execution. Each node in the tree represents a symbolic state of the
program, and each edge represents a transition between two states. A symbolic state
consists of a unique program location identifier, symbolic expressions for the program
variables currently in scope, and a path condition defining conditions (i.e., constraints)
that have to be satisfied in order for the execution path to this state to be taken. The
path condition describing the current path through the program is maintained during
symbolic execution by collecting constraints when conditional statements are encoun-
tered. Path conditions are checked for satisfiability using a constraint solver to establish
whether the corresponding execution path is feasible.

4 Components and Interfaces

Components and Methods. A component is defined by the grammar in Fig. 3. A com-
ponent C has a set of global variables representing internal state and a set of one or more

methods. We assume methods have no recursion. (Note that this is a common assump-
tion since handling recursion in symbolic techniques is a well-known issue orthogonal
to this work.) For simplicity of exposition, we assume all methods are public and have
unique names, and all method calls are inlined. We also assume the usual statement
semantics. Let Ids be the set of component method identifiers (i.e., names), Stmts the
set of all component statements, and Prms the set of all input parameters of component
methods. We define the signature Sigm of a method m as a pair �Idm,Pm� ∈ Ids×2Prms;
we write Idm(Pm) for the signature Sigm of the method m. A method m is then defined
as a pair �Sigm,sm� where sm ∈ Stmts is its top-level statement.

Let M be the set of methods in a component C and G be the set of its global vari-
ables. For every method m ∈M , each parameter p ∈ Pm takes values from a domain Dp

based on its type; similarly for global variables. Given a method m ∈ M , an execution
θ ∈ Stmts∗ of m is a finite sequence of visited statements s1s2 . . .sn where s1 is the top-
level method statement sm. The set Θm ∈ 2Stmts∗ is the set of all unique executions of m.
We assume that each execution θ ∈ Θm of a method visits a bounded number of state-
ments (i.e., |θ | is bounded), and also that the number of unique executions is bounded
(i.e., |Θm| is bounded); in other words, the methods have no unbounded loops. (Similar
to recursion, this is a common assumption and a well-known issue orthogonal to this
work.) A valuation over Pm, denoted [Pm], is a function that assigns to each parameter
p ∈ Pm a value in Dp. We denote a valuation over variables in G with [G]. We take [Gi]
as the valuation representing the initial values of all global variables. Given valuations
[Pm] and [G], we assume that the execution of m visits exactly the same sequence of
statements; in other words, the methods are deterministic.

Symbolic Expressions. We interpret all the parameters of methods symbolically, and
use the name of each parameter as its symbolic name; with an abuse of notation, we
take Prms to also denote the set of symbolic names. A symbolic expression e is defined
as follows:

e ::= C | p | (e ◦ e),

where C is a constant, p ∈ Prms a parameter, and ◦ ∈ {+,−,∗,/,%} an arithmetic
operator. The set of constants in an expression may include constants that are used in
statements or the initial values of component state variables in [Gi].

Constraints. We define a constraint ϕ as follows:

ϕ ::= true | false | e ⊕ e | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ⊕ ∈ {<,>,=,≤,≥} is a comparison operator.

Guards. Given a method signature m = �Idm,Pm�, a guard γm is defined as a constraint
that only includes parameters from Pm.

Interfaces. Previous work uses LTSs to describe temporal component interfaces. How-
ever, as described in Sec. 2, a more precise interface ideally also uses guards to capture
constraints on method input parameters.

We define an interface LTS, or iLTS, to take into account guards, as follows. An
iLTS is a tuple A = �M,S ,Γ ,∆�, where M = �Q,αM,δ ,q0� is a deterministic and

complete LTS, S a set of method signatures, Γ a set of guards for method signatures
in S , and ∆ : αM �→S ×Γ a function that maps each a∈ αM into a method signature
m ∈S and a guard γm ∈ Γ . In addition, the mapping ∆ is such that the set of all guards
for a given method signature form a partition of the input space of the corresponding
method. Let Γm = {γ | ∃a ∈ αM.∆(a) = (m,γ)} be the set of guards belonging to a
method m. More formally, the guards for a method are (1) non-overlapping:

∀a,b ∈ αM, γa,γb ∈Γ , m ∈S . a �= b∧∆(a) = (m,γa)∧∆(b) = (m,γb)⇒ ¬γa∨¬γb,

(2) cover all of the input space: ∀m ∈ S .
�

γ∈Γm
γ = true, and (3) are non-empty.

Given an iLTS A = �M,S ,Γ ,∆�, an execution of A is a sequence of pairs σ =
(m0,γm0),(m1,γm1), . . . ,(mn,γmn

), where for 0 ≤ i ≤ n, pair (mi,γmi
) consists of a

method signature mi ∈ S and its corresponding guard γmi
. Every execution σ has a

corresponding trace a0,a1, . . . ,an in M such that for 0 ≤ i ≤ n, ∆(ai) = (mi,γmi
). Then

σ is a legal (resp. illegal, unknown) execution in A, if its corresponding trace in M is le-
gal (resp. illegal, unknown). Based on this distinction, we define Llegal (A), Lillegal (A),
and Lunknown (A) as the sets of legal, illegal, and unknown executions of A, respectively.

An iLTS A = �M,S ,Γ ,∆� is an interface for a component C if S is a subset of
method signatures of the methods M in C . However, not all such interfaces are accept-
able and a notion of interface correctness also needs to be introduced. Traditionally,
correctness of an interface for a component C is associated with two characteristics:
safety and permissiveness, meaning that the interface blocks all erroneous and allows
all good executions (i.e., executions that do not lead to an error) of C , respectively. A
full interface is then an interface that is both safe and permissive [14].

We extend this definition to iLTSs as follows. Let iLTS A be an interface for a
component C . An execution σ = (m0,γm0),(m1,γm1), . . . ,(mn,γmn

) of A then repre-
sents every concrete sequence σc = (m0, [Pm0]),(m1, [Pm1]), . . . ,(mn, [Pmn

]) such that for
0 ≤ i ≤ n, [Pmi

] satisfies γmi
. Each such concrete sequence defines an execution of the

component C . We say an execution of a component is illegal if it results in an assertion
violation; otherwise, the execution is legal. Then, A is a safe interface for C if for every
execution σ ∈ Llegal (A), we determine that all the corresponding concrete executions
of component C are legal. It is permissive if for every execution σ ∈ Lillegal (A), we
determine that all the corresponding concrete executions of component C are illegal.
Finally, A is tight if for every execution σ ∈Lunknown (A), we cannot determine whether
the corresponding concrete executions of component C are legal or illegal; this explic-
itly captures possible incompleteness of the underlying analysis technique. To conclude,
we say A is full if it is safe, permissive, and tight. Moreover, we say A is k-full for some
k ∈ IN if it is safe, permissive, and tight for all method sequences of length up to k.

5 Symbolic Interface Learning

Let C be a component and S the set of signatures of a subset of the methods M in C .
Our goal is to automatically compute an interface for C as an iLTS A = �M,S ,Γ ,∆�.
We achieve this through a novel combination of L* to generate LTS M, and symbolic
execution to compute the set of guards Γ and the mapping ∆ .

At a high level, our proposed framework operates as follows (see Fig. 4).
It uses L* to learn an LTS over an alphabet that initially corresponds to

symbolic interpreter /
alphabet refiner

membership query: is sequence σ legal?

equivalence query: Mi represents full interf.?

true/ false/unknown

false + cex

refined

L*

true
create/invoke

membership queries

refined

new alphabet / restart learning

Teacher

<Mi ,S ,Γ,Δ>

alphabet
refiner

Fig. 4: PSYCO framework during iteration i of learning algorithm.

a set of signatures S of the methods of C . For our motivating exam-
ple, we start with the alphabet αM = {close,flush,connect,write}, set of sig-
natures S = {close(),flush(),connect(snk),write()}, and ∆ such that ∆(close) =
(close(), true), ∆(flush) = (flush(), true), ∆(connect) = (connect(snk), true), and
∆(write) = (write(), true). As mentioned earlier, L* interacts with a teacher that re-
sponds to its membership and equivalence queries. A membership query over the al-
phabet αM is a sequence σ = a0,a1, . . . ,an such that for 0 ≤ i ≤ n, ai ∈ αM. Given a
query σ , the teacher uses symbolic execution to answer the query. The semantics of ex-
ecuting a query in this context corresponds to exercising all paths through the methods
in the query sequence, subject to satisfying the guards returned by the map ∆ . When-
ever the set of all paths through the sequence can be partitioned into proper subsets that
are safe, lead to assertion violations, or to limitations of symbolic execution that prevent
further exploration, we refine guards to partition the input space of the methods in the
query sequence. We call this process alphabet refinement.

For our motivating example, the sequence σ = connect will trigger refinement of
symbol connect. As illustrated in Fig. 2, the input space of method connect must be
partitioned into the case where: (1) snk �= null∧ snk.connected = false, which leads to
safe executions, and (2) the remaining inputs, which lead to unsafe executions. When
a method is partitioned, we replace the symbol in αM corresponding to the refined
method with a fresh symbol for each partition, and the learning process is restarted
with the new alphabet. For example, we partition the symbol connect into connect 1

and connect 2, corresponding to the two cases above, before we restart learning. The
guards that define the partitions are stored in Γ , and the mapping from each new symbol
to the corresponding method signature and guard is stored in ∆ .

Algo. 1 is the top-level algorithm implemented by our interface generation frame-
work. First, we initialize the alphabet αM and the set of guards Γ on line 1. Then, we
create a fresh symbol a for every method signature m, and use it to populate the al-
phabet αM and the mapping ∆ (lines 2–6). The main loop of the algorithm learns an
interface for the current alphabet; the loop either refines the alphabet and reiterates, or

Algo. 1 Learning an iLTS for a component.
Input: A set of method signatures S of a component C .
Output: An iLTS A = �M,S ,Γ ,∆�.
1: αM ← /0, Γ ← {true}
2: for all m ∈ S do

3: a← CreateSymbol()
4: αM ← αM∪{a}
5: ∆(a)← (m,true)
6: end for

7: loop

8: AlphabetRefiner.init(αM,∆)
9: SymbolicInterpreter.init(αM,AlphabetRefiner)

10: Teacher.init(∆ ,SymbolicInterpreter)
11: Learner.init(αM,Teacher)
12: M ← Learner.learnAutomaton()
13: if M = null then

14: (αM,Γ ,∆)← AlphabetRefiner.getRefinement()
15: else

16: return A = �M,S ,Γ ,∆�
17: end if

18: end loop

produces an interface and terminates. In the loop, an alphabet refiner is initialized on
line 8, and is passed as an argument for the initialization of the SymbolicInterpreter on
line 9. The SymbolicInterpreter is responsible for invoking the symbolic execution en-
gine and interpreting the obtained results. It may, during this process, detect the need for
alphabet refinement, which will be performed through invocation of AlphabetRefiner.
We initialize a teacher with the current alphabet and the SymbolicInterpreter on line 10,
and finally a learner with this teacher on line 11. The learning process then takes place
to generate a classical LTS M (line 12). When learning produces an LTS M that is not
null, then an iLTS A is returned that consists of M and the current guards and mapping,
at which point the framework terminates (line 16). If M is null, it means that refinement
took place during learning. We obtain the new alphabet, guards, and mapping from the
AlphabetRefiner (line 14) and start a new learn-refine iteration.

Teacher. As discussed in Sec. 3, the teacher responds to membership and equivalence
queries produced by L*. Given a membership query σ = a0,a1, . . . ,an, the symbolic
teacher first generates a program Pσ . For each symbol ai in the sequence, Pσ invokes
the corresponding method mi while assuming its associated guard γmi

using an assume
statement. The association is provided by the current mapping ∆ , i.e., ∆(ai) = (mi,γmi

).
The semantics of statement assume Expr is that it behaves as skip if Expr evaluates to
true; otherwise, it blocks the execution. This ensures that the symbolic execution engine
considers only arguments that satisfy the guard, while all other values are ignored.

For the example of Fig. 1, let σ = close,connect 1,write be a query,
where ∆(close) = (close(), true), ∆(connect 1) = (connect(snk),snk �= null ∧
snk.connected = false), and ∆(write) = (write(), true). Fig. 5 gives the generated pro-
gram Pσ for this query. Such a program is then passed to the SymbolicInterpreter that
performs symbolic analysis and returns one of the following: (1) TRUE corresponding

void main(PipedInputStream snk) {

assume true; close();

assume snk != null && snk.connected == false; connect(snk);

assume true; write();

}

Fig. 5: The generated program Pσ for the query sequence σ = close,connect 1,write,
where ∆(close) = (close(), true), ∆(connect 1) = (connect(snk),snk �= null ∧
snk.connected = false), and ∆(write) = (write(), true).

to a true answer for learning, (2) FALSE corresponding to a false answer, (3) UNKNOWN
corresponding to an unknown answer, and (4) REFINED, reflecting the fact that alphabet
refinement took place, in which case the learning process must be interrupted, and the
learner returns an LTS M = null.

An equivalence query checks whether the conjectured iLTS A = �M,S ,Γ ,∆�, with
M = �Q,αM,δ ,q0�, is safe, permissive, and tight. One approach to checking these
three properties would be to encode the interface as a program, similar to the program
for membership queries. During symbolic execution of this program, we would check
whether the conjectured LTS correctly characterizes legal, illegal, and unknown uses
of the component. However, conjectured interfaces have unbounded loops; symbolic
techniques handle such loops through bounded unrolling. We follow a similar process,
but rather than having the symbolic engine unroll loops, we reduce equivalence queries
to membership queries of bounded depth. Note that this approach, similar to loop un-
rolling during symbolic execution, is not complete. Hence, it may fail to detect that an
interface is not full, in which case learning terminates early, and produces an LTS that
may still be informative.

We generate such bounded membership queries by performing a depth-first traver-
sal of M to some depth k to generate all possible sequences of length k. Each generated
sequence belongs to one of three sets Llegal (M), Lillegal (M), or Lunknown (M). Every
sequence σ is then queried using the algorithm for membership queries. If the mem-
bership query for σ returns REFINED, learning is restarted since the alphabet has been
refined. Furthermore, if the membership query for a sequence σ ∈Llegal (M) (resp. σ ∈
Lillegal (M), σ ∈ Lunknown (M)) does not return TRUE (resp. FALSE, UNKNOWN), the cor-
responding interface is not full and σ is returned to L* as a counterexample to the
equivalence query. Otherwise, the interface is guaranteed to be k-full, i.e., safe, permis-
sive, and tight up to depth k.

Symbolic Interpreter. Algo. 2 shows the algorithm implemented in
SymbolicInterpreter and called by the teacher. The algorithm invokes a symbolic
execution engine, and interprets its results to determine answers to queries. The input
to the algorithm is a program Pσ as defined above, and a set of symbols Σ . The output
is either TRUE, FALSE, or UNKNOWN, if no alphabet refinement is needed, or REFINED,
which reflects that alphabet refinement took place.

Algo. 2 starts by executing Pσ symbolically (line 1), treating main method param-
eters (e.g., snk in Fig. 5) as symbolic inputs. Every path through the program is then
characterized by a path constraint, denoted by pc. A pc is a constraint over symbolic
parameters, with each conjunct in the constraint stemming from a conditional state-

Algo. 2 Symbolic interpreter.
Input: Program Pσ and set of symbols Σ .
Output: TRUE, FALSE, UNKNOWN, or REFINED.
1: (PC,ρ)← SymbolicallyExecute(Pσ)
2: ϕ err ← ϕ ok ← ϕ unk ← false
3: for all pc ∈ PC do

4: if ρ(pc) = error then

5: ϕ err ← ϕ err ∨ pc

6: else if ρ(pc) = ok then

7: ϕ ok ← ϕ ok ∨ pc

8: else

9: ϕ unk ← ϕ unk ∨ pc

10: end if

11: end for

12: if ¬(SAT(ϕ err)∨SAT(ϕ unk)) then

13: return TRUE

14: else if ¬(SAT(ϕ ok)∨SAT(ϕ unk)) then

15: return FALSE

16: else if ¬(SAT(ϕ err)∨SAT(ϕ ok)) then

17: return UNKNOWN

18: else

19: Σnew←AlphabetRefiner.refine(ϕ err,ϕ unk)
20: if |Σnew|= |Σ | then

21: return UNKNOWN

22: else

23: return REFINED

24: end if

25: end if

Algo. 3 Symbolic alphabet refinement.
Input: Set of symbols Σ , mapping ∆ , and

constraints ϕ err, ϕ unk.
Output: Refinement Σnew, Γnew, ∆new.
1: Σnew ← Γnew ← /0
2: for all a ∈ Σ do

3: (m,γ)← ∆(a)
4: ϕ err

m ← Πm(ϕ err)
5: ϕ unk

m ← γ ∧¬ϕ err
m ∧Πm(ϕ unk)

6: if ¬MP(ϕ err
m)∧¬MP(ϕ unk

m) then

7: ϕ ok
m ← γ ∧¬ϕ err

m ∧¬ϕ unk
m

8: if SAT(ϕ err
m) then

9: aerr ← CreateSymbol()
10: Σnew ← Σnew ∪{aerr}
11: Γnew ← Γnew ∪{ϕ err

m }
12: ∆new(aerr)← (m,ϕ err

m)
13: end if

14: if SAT(ϕ unk
m) then

15: aunk ← CreateSymbol()
16: Σnew ← Σnew ∪{aunk}
17: Γnew ← Γnew ∪{ϕ unk

m }
18: ∆new(aunk)← (m,ϕ unk

m)
19: end if

20: if SAT(ϕ ok
m) then

21: aok ← CreateSymbol()
22: Σnew ← Σnew ∪{aok}
23: Γnew ← Γnew ∪{ϕ ok

m }
24: ∆new(aok)← (m,ϕ ok

m)
25: end if

26: else

27: Σnew ← Σnew ∪{a}
28: Γnew ← Γnew ∪{γ}
29: ∆new(a)← (m,γ)
30: end if

31: end for

32: return Σnew,Γnew,∆new

ment encountered along the path; a path constraint precisely characterizes a path taken
through the program. A constraint partitions the set of all valuations over input param-
eters of the program (i.e., input parameters of the called component methods) into the
set of valuations that satisfy the constraint and the set of valuations that do not satisfy
the constraint. We denote a set of path constraints as PC.

We define a map ρ : PC �→ {error,ok,unknown} which, given a path constraint
pc ∈ PC, returns error (resp. ok) if the corresponding path represents an erroneous
(resp. good) execution of the program; otherwise, ρ returns unknown. Mapping pc to
unknown represents a case when the path constraint cannot be solved by the underlying

constraint solver used by the symbolic execution engine. Symbolic execution returns a
set of path constraints PC and the mapping ρ , which are then interpreted by the algo-
rithm to determine the answer to the query.

After invoking symbolic execution, the algorithm initializes three constraints (ϕ err

for error, ϕ ok for good, and ϕ unk for unknown paths) to false on line 2. The loop on
lines 3–11 iterates over path constraints pc ∈ PC, and based on whether pc maps into
error, ok, or unknown, adds pc as a disjunct to either ϕ err, ϕ ok, or ϕ unk, respectively.
Let SAT : Φ �→ B, where Φ is the universal set of constraints, be a predicate such that
SAT(ϕ) holds if and only if the constraint ϕ is satisfiable. In lines 12–17, the algorithm
returns TRUE if all paths are good paths (i.e., if there are no error and unknown paths),
FALSE if all paths are error paths, or UNKNOWN if all paths are unknown paths.

Otherwise, alphabet refinement needs to be performed; method refine of the
AlphabetRefiner is invoked, which returns the new alphabet Σnew (line 19). If the al-
phabet size stays the same, no methods have been refined. This can only happen if all
potential refinements involve mixed-parameter constraints. Informally, a constraint is
considered mixed-parameter if it relates symbolic parameters from multiple methods.
As explained in Algo. 3, dealing with mixed parameters precisely is beyond the scope
of this work. Therefore, Algo. 2 returns UNKNOWN. Otherwise, refinement took place,
and Algo. 2 returns REFINED.

Symbolic Alphabet Refinement. The SymbolicInterpreter invokes the refinement al-
gorithm using method refine of the AlphabetRefiner. The current alphabet, mapping,
and constraints ϕ err and ϕ unk computed by the SymbolicInterpreter, are passed as in-
puts. Method refine implements Algo. 3.

In Algo. 3, the new set of alphabet symbols Σnew and guards Γnew are initialized on
line 1. The loop on lines 2–31 determines, for every alphabet symbol, whether it needs
to be refined, in which case it generates the appropriate refinement. Let ∆(a) = (m,γ).
An operator Πm is then used to project ϕ err on the parameters of m (line 4). When
applied to a path constraint pci, Πm erases all conjuncts that don’t refer to a symbolic
parameter of m. If no conjunct remains, then the result is false. For a disjunction of
path constraints ϕ = pc1 ∨ . . .∨ pcn (such as ϕ err or ϕ unk), Πm(ϕ) = Πm(pc1)∨ . . .∨
Πm(pcn). For example, if m = �foo,{x,y}�, then Πm((s = t) ∨ (x < y) ∨ (s ≤ z ∧ y =
z)) �→ false ∨ (x < y) ∨ (y = z), which simplifies to (x < y) ∨ (y = z).

We compute ϕ unk
m on line 5. At that point, we check whether either ϕ err

m or ϕ unk
m

involve mixed-parameter constraints (line 6). This is performed using a predicate MP :
Φ �→ B, where Φ is the universal set of constraints, defined as follows: MP(ϕ) holds
if and only if |Mthds(ϕ)| > 1. The map Mthds : Φ �→ 2M maps a constraint ϕ ∈ Φ
into the set of all methods that have parameters occurring in ϕ . Dealing with mixed-
parameter constraints in a precise fashion would require more expressive automata, and
is beyond the scope of this paper. Therefore, refinement proceeds for a symbol only
if mixed-parameter constraints are not encountered in ϕ err

m and ϕ unk
m . Otherwise, the

current symbol is simply added to the new alphabet (lines 27–29).
We compute ϕ ok

m on line 7 in terms of ϕ err
m and ϕ unk

m , so it does not contain mixed-
parameter constraints either. Therefore, when the algorithm reaches this point, all of
ϕ err

m , ϕ unk
m , ϕ ok

m represent potential guards for the method refinement. Note that ϕ err
m ,

ϕ unk
m , and ϕ ok

m are computed in such a way that they partition the input space of the

method m, if it gets refined. A fresh symbol is subsequently created for each guard that
is satisfiable (lines 8, 14, 20), We update Σnew, Γnew, and ∆new with the fresh symbol
and its guard. In the end, the algorithm returns the new alphabet. The computed guards
and mapping are stored in local fields that can be accessed through the getter method
getRefinement() of the AlphabetRefiner (see Algo. 1, line 14).

6 Correctness and Guarantees

As discussed, symbolic techniques typically handle loops and recursion by unrolling
them a bounded number of times. We consider this source of incompleteness an or-
thogonal issue to the arguments presented in this section. Hence, we assume loops and
recursion are unrolled prior to the application of our algorithm. For simplicity, we also
assume method calls are inlined. Our correctness arguments apply to such modified
components, whose methods have a finite number of paths due to the unrolling. We
provide proofs of our theorems in Appendix A.

We begin by showing correctness of the teacher for L*. In the following lemma, we
prove that the program Pσ that we generate to answer a query σ captures all possible
concrete sequences for σ . The proof follows from the structure of Pσ .
Lemma 1. (Correctness of Pσ). Given a component C and a query σ on C , the set of

executions of C driven by Pσ is equal to the set of concrete sequences for σ .

The following theorem shows that the teacher correctly responds to membership
queries. The proof follows from the finiteness of paths taken through a component and
from an analysis of Algo. 2.
Theorem 1. (Correctness of Answers to Membership Queries). Given a component

C and a query σ , the teacher responds TRUE (resp. FALSE, UNKNOWN) if and only if all

executions of C for σ are legal (resp. illegal, cannot be resolved by the analysis).

Next, we show that the teacher correctly responds to equivalence queries up to depth
k. The proof follows from our reduction of equivalence queries to membership queries
since we generate all possible sequences of symbols in the alphabet from a conjectured
LTS of length up to k.
Theorem 2. (Correctness to Depth k of Answers to Equivalence Queries). Let M be

an LTS conjectured by the learning process for some component C , Γ the current set of

guards, and ∆ the current mapping. If an equivalence query returns a counterexample,

A = �M,S ,Γ ,∆� is not a full interface for C . Otherwise, A is k-full.

We use the following two lemmas in proving progress and termination of our algo-
rithm. The first lemma is a property of L*, while the second is a property of our alphabet
refinement.
Lemma 2. (Termination of Learning). If the unknown languages are regular, then L*

is guaranteed to terminate.

Lemma 3. (Alphabet Partitioning). Algo. 3 creates partitions for the alphabet sym-

bols it refines.

Given that the number of paths through a method is bounded, we can have at most
as many guards for the method as the number of these paths, which is bounded. Further-
more, if alphabet refinement is required, Algo. 3 always partitions at least one method.
This leads us to the following theorem.

Example # Methods Final Alphabet # Refinements k # States Time (s)
SIGNATURE 5 5 0 3 4 10.5
PIPEDOUTPUTSTREAM 4 5 1 3 3 32.0
INTMATH 8 16 7 1 3 74.1
ALTBIT 2 5 3 4 5 34.8
CEV-FLIGHTRULE 3 5 2 3 3 192.7
CEV 18 23 5 3 9 2846.1

Table 1: Experimental results. “# Methods” is the number of component methods (and
also the size of the initial alphabet); “Final Alphabet” the size of the alphabet upon
termination; “# Refinements” the number of the performed alphabet refinements; “k”
the depth of our equivalence queries; “# States” the number of states in the generated
iLTS; “Time” the overall running time in seconds.

Theorem 3. (Progress and Termination of Refinement). Alphabet refinement strictly

increases the alphabet size, and the number of possible refinements is bounded.

Finally, we characterize the overall guarantees of our framework with the following
theorem, whose proof follows from Theorem 2, Theorem 3, and Lemma 2.
Theorem 4. (Guarantees of PSYCO). If the behavior of a component C can be char-

acterized by an iLTS, then PSYCO terminates with a k-full iLTS for C .

7 Implementation and Evaluation

We implemented our approach in a tool called PSYCO within the Java Pathfinder
(JPF) open-source framework [17]. PSYCO consists of three new, modular JPF exten-
sions: (1) jpf-learn implements both the standard and the three-valued version of
L*; (2) jpf-jdart is our symbolic execution engine that performs concolic execu-
tion [11, 21]; (3) jpf-psyco implements the symbolic-learning framework, includ-
ing the teacher for L*. For efficiency, our implementation of L* caches query results
in a MemoizedTable. To reuse learning results after refinement, PSYCO uses a common
MemoizedTable for all learning instances. It also uses a naming convention that enables
tracing the history of alphabet symbols across refinements. For reuse, it then exploits
the fact that if a query σ has a stored result in the MemoizedTable, then any future
query obtained by substituting any symbol in σ with a refined version of this symbol,
will have the same result. Finally, note that programs Pσ are generated dynamically by
invoking their corresponding methods using Java reflection.

We evaluated our approach on several realistic examples:

SIGNATURE A class from the java.security package used in a paper by Singh et al. [22].
PIPEDOUTPUTSTREAM A class from the java.io package and our motivating example

(see Fig. 1). Taken from a paper by Singh et al. [22].
INTMATH A class from the Google Guava repository [12]. It implements arithmetic

operations on integer types.
ALTBIT Implements a communication protocol that has an alternating bit style of be-

havior. Howar et al. [16] use it as a case study.
CEV NASA Crew Exploration Vehicle (CEV) 1.5 EOR-LOR example modeling flight

phases of a space-craft. The example is based on a Java state-chart model available
in the JPF distribution under examples/jpfESAS. We translated the example
from state-charts into plain Java.

CEV-FLIGHTRULE Simplified version of the example that aims at exposing a flight
rule, as in a paper by Giannakopoulou and Pasareanu [10].

Table 1 summarizes the obtained experimental results. For all experiments,
jpf-jdart used the Yices SMT solver [8]. The experiments were performed on a
2GHz Intel Core i7 laptop with 8GB of memory running Mac OS X. The generated
interface automata are shown in Appendix B. For all examples, with the exception of
CEV, our technique terminates in a few minutes at most. CEV takes longer since it
involves more methods, some of them with a significant degree of branching.

We used a DFS depth k = 3 in all examples, except for INTMATH and ALTBIT. For
the former, 30 minutes were not sufficient for PSYCO to terminate since the number
of conditional branches in method log10 causes path explosion. However, we noticed
by inspection that none of the methods in this class affect global state, and therefore
concluded that a depth of k = 1 is sufficient. The resulting interface automaton can
reach state unknown due to the presence of non-linear constraints, which cannot be
solved using Yices. Similarly, by inspection, we identified the need to extend the depth
to k = 4 for ALTBIT, in order to expose its alternating behavior.

A characteristic of the examples for which PSYCO took longer to terminate was that
they involved methods with a large number of conditional branches. This is not particu-
lar to our approach, but inherent in any symbolic analysis technique. If n is the number
of branches in each method, and a program invokes m methods in sequence, then the
number of paths in this program is, in the worst case, exponential in m∗n. As a result,
symbolic analysis of queries is expensive both in branching within each method as well
as in the length of the query. Memoization and reuse of learning results after refinement
has been the key to ameliorating this problem since a significant number of queries gets
answered through lookup in the table rather than through symbolic execution. Further-
more, our jpf-jdart project is in its infancy and is being constantly improved, and
therefore we expect to see substantial speedups in the near future.

8 Conclusions and Future Work

We have presented the foundations of a novel approach for generating temporal com-
ponent interfaces enriched with method guards. Significant engineering can be applied
from this point on in order to make our approach and tools more efficient in practice.
Since symbolic execution is not complete and suffers from path explosion, heuristics
will be the key to increasing the applicability of PSYCO. Such heuristics will target
both the learning and the symbolic execution part of PSYCO.

PSYCO uses three-valued LTSs to represent interfaces. The unkown state reflects
the fact that our analysis has not been able to cover some parts of a component. During
compositional verification, such unknowns could be interpreted conservatively as er-
rors, or optimistically as legal states, thus creating bounds within which the behavior of
the component lies. Furthermore, future analysis efforts could focus on analyzing these
unexplored parts. The interface could also be enriched during testing or usage of the
component. Reuse of previous learning results, similar to what is currently performed,
could make this process incremental.

In the future, we also intend to investigate ways of addressing mixed parameters
more precisely. For example, we plan to combine PSYCO with a learning algorithm for

register automata [15]. This would enable us to relate parameters of different methods
through equality and inequality. Finally, we plan to investigate interface generation in
the context of compositional verification.

References

1. F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communication proto-
cols using regular inference with abstraction. In ICTSS, pages 188–204, 2010.

2. R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface specifications for Java
classes. In POPL, pages 98–109, 2005.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

4. S. Chaki and O. Strichman. Three optimizations for assume-guarantee reasoning with L*.
FMSD, 32(3):267–284, 2008.

5. Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-Y. Wang. Automated
assume-guarantee reasoning through implicit learning. In CAV, pages 511–526, 2010.

6. Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Learning minimal sepa-
rating DFA’s for compositional verification. In TACAS, pages 31–45, 2009.

7. C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song. MACE: Model-
inference-assisted concolic exploration for protocol and vulnerability discovery. In USENIX

Security Symposium, 2011.
8. B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report, SRI International,

2006.
9. M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu. Refining interface alphabets for

compositional verification. In TACAS, pages 292–307, 2007.
10. D. Giannakopoulou and C. S. Pasareanu. Interface generation and compositional verification

in JavaPathfinder. In FASE, pages 94–108, 2009.
11. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. SIG-

PLAN Not., 40(6):213–223, 2005.
12. Guava: Google core libraries. http://code.google.com/p/guava-libraries/.
13. A. Gupta, K. L. McMillan, and Z. Fu. Automated assumption generation for compositional

verification. In CAV, pages 420–432, 2007.
14. T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In ESEC/FSE, pages

31–40, 2005.
15. F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register automata. In

VMCAI, 2012.
16. F. Howar, B. Steffen, and M. Merten. Automata learning with automated alphabet abstraction

refinement. In VMCAI, pages 263–277, 2011.
17. Java PathFinder (JPF). http://babelfish.arc.nasa.gov/trac/jpf.
18. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
19. C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer. Learn-

ing to divide and conquer: applying the L* algorithm to automate assume-guarantee reason-
ing. FMSD, 32(3):175–205, 2008.

20. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. Inf.

Comput., 103(2):299–347, 1993.
21. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In ESEC/FSE,

pages 263–272, 2005.
22. R. Singh, D. Giannakopoulou, and C. S. Pasareanu. Learning component interfaces with

may and must abstractions. In CAV, pages 527–542, 2010.

A Proofs

Lemma 1. (Correctness of Pσ). Given a component C and a query σ on C , the set of

executions of C driven by Pσ is equal to the set of concrete sequences for σ .

Proof. Let σ = a0,a1, . . . ,an, where for 0 ≤ i ≤ n, ∆(ai) = (mi,γmi
). We first show that

any σc = (m0, [Pm0]),(m1, [Pm1]), . . . ,(mn, [Pmn
]) such that for 0 ≤ i ≤ n, [Pmi

] satisfies
γmi

, is an execution of C driven by Pσ . The program Pσ invokes methods of C in the
same order as the query does. Therefore, the only concrete executions that Pσ does
not drive are ones that violate the assumptions associated with each method. Since each
valuation [Pmi

] satisfies guard γmi
, it follows that Pσ drives σc. Reversely, each execution

of C driven by Pσ is a concrete execution σc defined by σ . This does not hold either if
(1) Pσ calls the methods in a different order, which is not the case, or if (2) the values
of arguments passed to methods in an execution of Pσ do not satisfy the corresponding
guards, which is not possible given the program’s assume statements. ��

Theorem 1. (Correctness of Answers to Membership Queries). Given a component

C and a query σ , the teacher responds TRUE (resp. FALSE, UNKNOWN) if and only if all

executions of C for σ are legal (resp. illegal, cannot be resolved by the analysis).

Proof. For a membership query σ , our teacher generates and analyzes the program Pσ .
Given that the length of the query σ is bounded, the number of compoment method
invocations in Pσ is bounded as well. The number of possible paths through a method
and the number of statements on each path are bounded (see assumptions in Sec. 4).
Consequently, the number of paths through Pσ is bounded, as well as the number of
statement on each path. Therefore, the number of path constraints is bounded and the
constraints will be exhaustively enumerated by symbolic execution. In Algo. 2, the
constraint ϕ ok is a disjuction of the path constraints for paths mapped to ok (see line 7).
The constraints ϕ err and ϕ unk are computed in the same fashion. The teacher responds
with TRUE if constraints ϕ err and ϕ unk are unsatisfiable, meaning that all paths in Pσ are
legal. Similar claims hold for FALSE and UNKNOWN responses. Therefore, the anwer to a
membership query is correct if and only if the program Pσ contains exactly the concrete
executions σc defined by σ , which follows from Lemma 1. ��

Theorem 2. (Correctness to Depth k of Answers to Equivalence Queries). Let M be

an LTS conjectured by the learning process for some component C , Γ the current set of

guards, and ∆ the current mapping. If an equivalence query returns a counterexample,

A = �M,S ,Γ ,∆� is not a full interface for C . Otherwise, A is k-full.

Proof. For an equivalence query, we generate all traces of the conjectured LTS of length
k, and convert them to membership queries. If the result of a membership query is
different from the result expected from the LTS, then this is a witness to the fact that A is
not full, by definition. When no counterexample is produced, A is full for all sequences
of method invocations of length up to k (the legal language of a component is prefix-
closed, so if a sequence of length k is legal, then all its prefixes are also legal). ��

Lemma 2. (Termination of Learning). If the unknown languages are regular, then L*

is guaranteed to terminate.

Proof. Each L* instance is either interrupted for refinement (and thus terminates), or
eventually terminates if the unknown languages are regular, and with a minimal (in
number of states) LTS, as guaranteed by the characteristics of the algorithm. ��
Lemma 3. (Alphabet Partitioning). Algo. 3 creates partitions for the alphabet sym-

bols it refines.

Proof. By analyzing lines 4–7 of Algo. 3, it is straightforward to show that every
two guards generated for each method are disjoint, and that the union of all three
guards ϕ err

m ,ϕ ok
m ,ϕ unk

m equals γ . Moreover, refinement only takes place when none of
ϕ err

m ,ϕ ok
m ,ϕ unk

m contain mixed parameter constraints. The algorithm then only generates
new alphabet symbols for satisfiable guards (lines 8, 14, 20), and therefore only gener-
ates non-empty partitions. Note that it is possible for a single partition to be generated,
which corresponds to no refinement of the method. ��
Theorem 3. (Progress and Termination of Refinement). Alphabet refinement strictly

increases the alphabet size, and the number of possible refinements is bounded.

Proof. Progress. Refinement is triggered by the symbolic execution of a program Pσ
generated for a membership query σ . All computed path constraints pc ∈ PC have the
same root, and no two path constraints are equivalent. Any two path constraints pci and
pc j diverge at a point that corresponds to a branching condition within some method m,
where different outcomes of the condition are stored in each path.

In Algo. 3, at least two of the constraints ϕ ok, ϕ err, ϕ unk are satisfiable whenever
refinement is invoked. For simplicity, assume that the two satisfiable constraints are
ϕ ok and ϕ err. These constraints must contain at least one path condition each, say pc1
and pc2. The path conditions pc1 and pc2 are not equivalent since they were generated
by symbolic execution of the same program, and since each path condition is added to
only one constraint by Algo. 2. Let pc1 and pc2 diverge at a condition from a method
m. Based on our initial observation, the projections Πm(pc1) and Πm(pc2) will at least
contain constraints that reflect the two outcomes of the condition at which they diverge.
So the method m is refined, unless these constraints involve mixed parameters.

As a consequence, either at least one method gets refined by Algo. 3 in more than
one partition, or all methods involve mixed parameters. In the former case, the current
symbol for method m is substituted by at least two fresh symbols in the new alphabet.
Therefore, the new alphabet has at least one symbol more than the previous one. In
the later case, the size of the new alphabet returned by Algo. 3 is equal to the size of
the current alphabet Algo. 2, in which case Algo. 2 returns UNKNOWN to L*, and L*
continues the learning process.

Termination. Since mixed-parameter constraints do not trigger refinement, our
framework refines a method only with respect to its paths. Since each method has a
bounded number of paths, we can have at most as many partitions of a method as the
number of its paths. ��
Theorem 4. (Guarantees of PSYCO). If the behavior of a component C can be char-

acterized by an iLTS, then PSYCO terminates with a k-full iLTS for C .

Proof. Overall termination follows from Theorem 3 and Lemma 2. The returned iLTS
is guaranteed to be k-full by Theorem 2. ��

B Generated Interfaces

S0

S1initSign[true]

S2initVerify[true]

ERR
update[true]

sign[true]

verify[true]

initSign[true]

update[true]

sign[true]

initVerify[true]

verify[true]

initSign[true]
initVerify[true]

update[true]

verify[true]

sign[true]

Fig. 6: iLTS for Signature.

S0

flush[true]

close[true]
S1connect[p != 0 && 1 != q]

ERRconnect[p == 0 || 1 == q]

write[true]

flush[true]

close[true]

write[true]

connect[p != 0 && 1 != q]

connect[p == 0 || 1 == q]

Fig. 7: iLTS for PipedOutputStream.

S0

reset[2 != p]

reset[2 == p]

S1
lasJettison[!(100000 > p)]

ERRlasJettison[100000 > p]

lsamRendezvous[true]

reset[2 == p]

reset[2 != p]

lsamRendezvous[true]

lasJettison[!(100000 > p)]

lasJettison[100000 > p]

Fig. 8: iLTS for CEV Flight Rule.

S0

isPowerOfTwo[true]

pow[!(q < 0)]

factorial[!(p < 0)]

gcd[!(q < 0 || p < 0) && !(p >= 0 && q >= 0 && q != 0)]

log10[!(p <= 0 || (2 != q && 1 != q && 4 != q && 3 != q && 5 != q && 6 != q && 7 != q))]

checkedPow[!(32 <= q || q < 0)]

mod[!(q <= 0 || p < 0)]

ERR

checkedPow[32 <= q || q < 0]

factorial[p < 0]

gcd[q < 0 || p < 0]

divide[q == 0]

log10[p <= 0 || (2 != q && 1 != q && 4 != q && 3 != q && 5 != q && 6 != q && 7 != q)]

mod[q <= 0 || p < 0]

pow[q < 0]

DKN

gcd[!(q < 0 || p < 0) && (p >= 0 && q >= 0 && q != 0)]

divide[q != 0]

Fig. 9: iLTS for IntMath.

S0

ERR

msg[0 != (p % 2)]

recv_ack[p != 0 && 1 != p]

recv_ack[0 != p && !(p != 0 && 1 != p)]

recv_ack[0 == p]

S1

msg[0 == (p % 2)]
msg[0 != (p % 2)]

msg[0 == (p % 2)]

recv_ack[p != 0 && 1 != p]

recv_ack[0 != p && !(p != 0 && 1 != p)]

S2

recv_ack[0 == p] msg[0 == (p % 2)]

recv_ack[p != 0 && 1 != p]

recv_ack[0 != p && !(p != 0 && 1 != p)]

recv_ack[0 == p]

S3

msg[0 != (p % 2)]

recv_ack[0 != p && !(p != 0 && 1 != p)]

msg[0 != (p % 2)]

msg[0 == (p % 2)]

recv_ack[p != 0 && 1 != p]

recv_ack[0 == p]

Fig. 10: iLTS for AltBit.

S0

lsamAscentRendezvous[true]

srbIgnition[true]

loiBurn[true]

reset[2 != p && 4 != p]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

teiBurn[true]

reset[4 == p]

eiBurn[q != 0]

enterOrbitOps[1 != p]

reset[4 != p && !(2 != p && 4 != p)]

S1

doSMSeparation[true]

ERR

tliBurn[true]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

doEdsSeparation[true]

lsamRendezvous[true]

failure[true]

deOrbit[true]

eiBurn[q == 0]

S8

lasJettison[!(100000 > p)]

reset[4 == p]

lsamAscentRendezvous[true]

srbIgnition[true]

eiBurn[q != 0]

enterOrbitOps[1 != p]

reset[4 != p && !(2 != p && 4 != p)]

loiBurn[true]

reset[2 != p && 4 != p]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

teiBurn[true]

doSMSeparation[true]

failure[true]

deOrbit[true]

eiBurn[q == 0]

tliBurn[true]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

doEdsSeparation[true]

lsamRendezvous[true]

S2

lasJettison[!(100000 > p)]

reset[4 != p && !(2 != p && 4 != p)]

failure[true]

deOrbit[true]

eiBurn[q == 0]

tliBurn[true]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

doEdsSeparation[true]

lasJettison[!(100000 > p)]

lsamAscentRendezvous[true]

srbIgnition[true]

reset[4 == p]

eiBurn[q != 0]

enterOrbitOps[1 != p]

loiBurn[true]

reset[2 != p && 4 != p]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

teiBurn[true]

doSMSeparation[true]

S4

lsamRendezvous[true]

deOrbit[true]

reset[4 != p && !(2 != p && 4 != p)]

doSMSeparation[true]

failure[true]

eiBurn[q == 0]

tliBurn[true]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

doEdsSeparation[true]

lasJettison[!(100000 > p)]

reset[4 == p]

lsamAscentRendezvous[true]

srbIgnition[true]

eiBurn[q != 0]

enterOrbitOps[1 != p]

loiBurn[true]

reset[2 != p && 4 != p]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

teiBurn[true]

S3

lsamRendezvous[true]

doSMSeparation[true]

failure[true]

deOrbit[true]

eiBurn[q == 0]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

lasJettison[!(100000 > p)]

teiBurn[true]
lsamAscentRendezvous[true]

srbIgnition[true]

eiBurn[q != 0]

enterOrbitOps[1 != p]

tliBurn[true]

loiBurn[true]

reset[2 != p && 4 != p]

doEdsSeparation[true]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

lsamRendezvous[true]

reset[4 == p]

S6

reset[4 != p && !(2 != p && 4 != p)]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

lasJettison[!(100000 > p)]

teiBurn[true]

failure[true]

deOrbit[true]

eiBurn[q == 0]

doSMSeparation[true]

enterOrbitOps[1 != p]

tliBurn[true]

loiBurn[true]

reset[2 != p && 4 != p]

doEdsSeparation[true]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

lsamRendezvous[true]

lsamAscentRendezvous[true]

srbIgnition[true]

reset[4 == p]

eiBurn[q != 0]

S5

reset[4 != p && !(2 != p && 4 != p)]

doSMSeparation[true]

failure[true]

deOrbit[true]

eiBurn[q == 0]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

lsamRendezvous[true]

teiBurn[true]

lasJettison[!(100000 > p)]

lsamAscentRendezvous[true]

srbIgnition[true]

eiBurn[q != 0]

enterOrbitOps[1 != p]

reset[4 != p && !(2 != p && 4 != p)]

tliBurn[true]

loiBurn[true]

reset[2 != p && 4 != p]

doEdsSeparation[true]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

reset[4 == p]

failure[true]

deOrbit[true]

eiBurn[q == 0]

enterOrbitOps[1 == p]

abort[true]

lasJettison[100000 > p]

lsamRendezvous[true]

teiBurn[true]

lasJettison[!(100000 > p)]

doSMSeparation[true]

lsamAscentRendezvous[true]

srbIgnition[true]

reset[4 == p]

eiBurn[q != 0]

enterOrbitOps[1 != p]

reset[4 != p && !(2 != p && 4 != p)]

tliBurn[true]

loiBurn[true]

reset[2 != p && 4 != p]

doEdsSeparation[true]

lsamAscentBurn[true]

stage1Separation[true]

stage2Separation[true]

Fig. 11: iLTS for CEV.

